Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Restorative Dentistry & Endodontics ; : e15-2019.
Article in English | WPRIM | ID: wpr-741998

ABSTRACT

OBJECTIVES: The aim of this study was to investigate whether the diameter and direction of the plunger and simulation of the periodontal ligament (PDL) affected the stress distribution in endodontically treated premolars. METHODS: A fracture strength test was simulated via finite element analysis. A base model was set up, and the following parameters were modified: plunger diameter (3 mm vs. 6 mm), plunger direction (vertical vs. 135° angular to the central fossa), and PDL simulation. The analysis was conducted using the CosmosWorks structural analysis program, and the results are presented in terms of von Mises stresses. RESULTS: The smaller plunger increased the stresses at the contact area of the crown, but the plunger diameter had no effect on the stress distribution within the root. An angular plunger direction increased stresses within the root, as well as at the buccal cusp of the crown, compared with the vertical direction. Simulation of the PDL caused higher stress accumulation, especially in the cervical region of the root. CONCLUSIONS: The plunger diameter had no effect on the stress distribution in the roots, whereas the plunger direction and PDL simulation did affect the stress distribution. More stringent standards can be established by taking such parameters into account when performing fracture testing in future studies.


Subject(s)
Bicuspid , Crowns , Endodontics , Finite Element Analysis , Periodontal Ligament , Tooth
2.
The Journal of Advanced Prosthodontics ; : 75-84, 2016.
Article in English | WPRIM | ID: wpr-26932

ABSTRACT

PURPOSE: To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS: 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS: SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION: The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments.


Subject(s)
Adhesives , Ceramics , Glass , Hot Temperature , Lithium , Resin Cements
SELECTION OF CITATIONS
SEARCH DETAIL